ON THE OPTIMALITY OF A THEOREM OF ELTON ON ℓ_1^n SUBSYSTEMS

BY

S. J. DILWORTH

Department of Mathematics, University of South Carolina Columbia, SC 29208, USA e-mail: dilworth@math.sc.edu

AND

DENKA KUTZAROVA*

Institute of Mathematics, Bulgarian Academy of Sciences
Sofia, Bulgaria
e-mail: denka@math.sc.edu

ABSTRACT

We present examples which show that a substantial strengthening of the hypothesis in the almost isometric part of a theorem of Elton on ℓ_1^n subsystems does not lead to a substantially stronger conclusion.

A well-known theorem of Elton [1, Theorem 1] on the existence of ℓ_1^n subsystems is in two parts. The second part, which is 'almost isometric' in character, may be formulated as follows.

THEOREM E: Let $\alpha \in (0, 1/2)$ and let $\beta \in (0, 1)$. There exists $\delta < 1$ (depending only on α and β) such that if $(e_i)_{i=1}^n$ are vectors in the unit ball of a real Banach space X such that

(1)
$$\operatorname{average}_{\pm} \left\| \sum_{i=1}^{n} \pm e_i \right\| \ge \delta n$$

^{*} Current address: Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA Received June 21, 2000

(the average taken over all choices of \pm) then there exists $A \subseteq \{1, 2, ..., n\}$, with $|A| \ge (1/2 - \alpha)n$, such that

$$\left\| \sum_{i \in A} a_i e_i \right\| \ge \beta \sum_{i \in A} |a_i|$$

for all scalars $(a_i)_{i \in A}$.

We are not concerned here with the first part of [1, Theorem 1], which is 'isomorphic' in character: the reader is referred to [1] for this result (and to [3] for the case of complex scalars); the reader is referred to [4] and [5] for further isomorphic results related to Theorem E.

An example due to Szarek [1, p. 121] shows that it is not possible to choose A in Theorem E to satisfy $|A| \geq (1/2 + \alpha)n$. The theorem below answers a question raised in [1, p. 114] by showing that it is not possible to choose A in Theorem E to satisfy $|A| \geq (1/2 + \alpha)n$ even if the hypothesis (1) is replaced by the stronger hypothesis

$$\min_{\pm} \left\| \sum_{i=1}^{n} \pm e_i \right\| \ge \delta n.$$

In fact, given $\beta > 0$, our example can be constructed (see (ii) of the Theorem) to satisfy

$$\min_{\pm} \left\| \sum_{i=1}^{n} \pm e_i \right\| \ge n - \beta.$$

Recall that a sequence $(y_i)_{i=1}^n$ in a Banach space X is **suppression** 1-unconditional if, whenever $A \subseteq B \subseteq \{1, 2, ..., n\}$, then $\|\sum_A a_i y_i\| \le \|\sum_B a_i y_i\|$ for all scalars (a_i) . In the following, $(e_i)_{i=1}^n$ denotes the standard basis of \mathbb{R}^n and $\|\cdot\|_1$ denotes the ℓ_1^n norm. For a vector $x = \sum_{i=1}^n x_i e_i$, supp x denotes the set $\{1 \le i \le n : x_i \ne 0\}$.

THEOREM: Let $\alpha \in (0, 1/2)$ and let $\beta \in (0, 1)$. For all sufficiently large n there exists a norm $\|\cdot\|$ on \mathbb{R}^n with the following properties:

(i) $(e_i)_{i=1}^n$ is a suppression 1-unconditional normalized basis of $(\mathbb{R}^n, \|\cdot\|)$.

(ii)

$$\left\| \sum_{i=1}^{n} \pm e_i \right\| \ge n - \beta$$

for all choices of signs.

(iii) For every $A \subseteq \{1, 2, ..., n\}$, with $|A| = 1 + \lceil (1/2 + \alpha)n \rceil$, there exists a nonzero vector x, with supp $x \subseteq A$, such that

(2)
$$||x||_1 \ge (1 + \eta(\alpha, \beta))||x||,$$

where

$$\eta(\alpha,\beta) = \frac{\alpha\beta}{(3\alpha+1)\lfloor (2\ln 2)/\alpha^2\rfloor - \alpha\beta}.$$

Remark: Note that $\eta(\alpha, \beta) \geq c\alpha^3\beta$, where c is an absolute constant. This *linear* dependence of η on β is optimal since (ii), $||e_i|| \leq 1$, and the triangle inequality imply

$$||x|| \ge (1 - \beta)||x||_1 \quad (x \in \mathbb{R}^n).$$

The following probabilistic lemma will be used to construct $\|\cdot\|$. (Here $A\triangle B$ denotes the **symmetric difference** of A and B.)

LEMMA: Let $\alpha \in (0,1)$. For all sufficiently large n there exist n sets $S_i \subseteq \{1,2,\ldots,n\}$ $(1 \le i \le n)$ satisfying the following: for every $S \subseteq \{1,2,\ldots,n\}$, we have

$$|\{1 \le i \le n: \min(|S \triangle S_i|, |(I \setminus S) \triangle S_i|) \le (1/2 - \alpha/2)n\}| \le \frac{2 \ln 2}{\alpha^2}.$$

Proof: First we recall a well-known estimate (see, e.g., [2] for a more general inequality). Let $(\varepsilon_m)_{m=1}^{\infty}$ be a sequence of independent Bernoulli random variables (defined on a probability space (Ω, \mathbb{P})) taking the values 1 and -1 with probability 1/2. Then, for $\alpha > 0$ and $n \ge 1$, we have

(3)
$$\mathbb{P}\left(\sum_{m=1}^{n} \varepsilon_m \ge \alpha n\right) \le \exp(-n\alpha^2/2).$$

Set $k = \lfloor (2 \ln 2)/\alpha^2 \rfloor + 1$. We shall choose the sets S_i independently with the uniform distribution. Fix $S \subseteq \{1, 2, ..., n\}$. Then, for each $1 \le i \le n$, we have

$$\mathbb{P}(|S\triangle S_i(\omega)| \le (1/2 - \alpha/2)n) \le \exp(-n\alpha^2/2).$$

Indeed, this is precisely equivalent to (3) if we identify subsets of $\{1, 2, ..., n\}$ with sequences of 1's and -1's in the obvious way. Hence

$$\mathbb{P}(\min(|S \triangle S_i(\omega)|, |(I \setminus S) \triangle S_i(\omega)|) \le (1/2 - \alpha/2)n) \le 2\exp(-n\alpha^2/2).$$

Now fix $1 \le j_1 < j_2 < \ldots < j_k \le n$. By independence, we have

$$\mathbb{P}(\min(|S \triangle S_i(\omega)|, |(I \setminus S) \triangle S_i(\omega)|) \le (1/2 - \alpha/2)n \text{ for all } i \in \{j_1, \dots, j_k\})$$
$$\le 2^k \exp(-kn\alpha^2/2).$$

So the probability that there exists $S \subseteq \{1, 2, ..., n\}$ and that there exist indices $1 \le j_1 < j_2 < ... < j_k \le n$ for which

$$\min(|S \triangle S_i(\omega)|, |(I \setminus S) \triangle S_i(\omega)|) \le (1/2 - \alpha/2)n$$

for all $i \in \{j_1, \ldots, j_k\}$ is at most

$$2^n \binom{n}{k} 2^k \exp(-kn\alpha^2/2) = \binom{n}{k} 2^k \exp(-n(k\alpha^2/2 - \ln 2)).$$

Since $k\alpha^2/2 - \ln 2 > 0$, this probability is less than 1 for all sufficiently large n. So, for all sufficiently large n, there exists $\omega \in \Omega$ such that $S_i(\omega)$ $(1 \le i \le n)$ satisfy the conclusion.

Now we start on the proof of the Theorem. Let $I = \{1, 2, ..., n\}$ and let $(S_i)_{i=1}^n$ satisfy the conclusion of the Lemma for $\alpha \in (0, 1/2)$. Let $k(\alpha) = \lfloor (2 \ln 2)/\alpha^2 \rfloor$ and let $\gamma = \beta/k(\alpha)$. Note that $\gamma \in (0, 1)$.

For $1 \le i \le n$, we say that a set $S \subseteq I$ is *i*-large if either $|S \triangle S_i| \le (1/2 - \alpha/2)n$ or $|(I \setminus S) \triangle S_i| \le (1/2 - \alpha/2)n$. Note that, for each $1 \le i \le n$, the collection of all *i*-large sets is closed under complementation.

Let $y = (y_i)_{i \in I}$ be a vector whose coordinates belong to the interval [-1, 1]. We set $P(y) = \{i \in I: y_i > 1 - \gamma\}$ and $N(y) = \{i \in I: y_i < -1 + \gamma\}$. For $S \subseteq I$, we say that y is S-admissible and that y is obtained from S if the following conditions hold:

- (a) $|y_i| \leq 1 \gamma$ whenever S is *i*-large.
- (b) $P(y) \subseteq S$ and $N(y) \subseteq I \setminus S$.

Note that if y is S-admissible then -y is $(I \setminus S)$ -admissible. This follows from the fact that the collection of i-large sets is closed under complementation.

A vector y is said to be **admissible** if y is S-admissible for some $S \subseteq I$. Let F denote the collection of all admissible vectors. Then F is symmetric, i.e., if $y \in F$ then $-y \in F$.

Now we can define the norm $\|\cdot\|$:

(4)
$$\left\| \sum_{i \in I} x_i e_i \right\| = \max_{y \in F} \sum_{i \in I} x_i y_i.$$

The symmetry of F guarantees that (4) defines a norm. The fact that this norm is suppression 1-unconditional is an immediate consequence of the following easily checked property of F: if $y \in F$ and z is obtained from y by replacing some of the coordinates of y by zeros, then $z \in F$. It is also easy to check that $||e_i|| = 1$ for all $1 \le i \le n$.

Proof of (ii): Let $\eta = (\eta_i)_{i=1}^n$ be a choice of signs. Define $y = (y_i)$ thus:

$$y_i = \begin{cases} \eta_i & \text{if } P(\eta) \text{ is } not \text{ } i\text{-large}, \\ (1 - \gamma)\eta_i & \text{if } P(\eta) \text{ is } i\text{-large}. \end{cases}$$

Clearly, y is $P(\eta)$ -admissible, so $y \in F$. By the Lemma, $P(\eta)$ is i-large for at most $k(\alpha)$ indices i. Thus

$$\left\| \sum_{i=1}^{n} \eta_i e_i \right\| \ge \sum_{i=1}^{n} \eta_i y_i \ge \sum_{i=1}^{n} \eta_i^2 - k(\alpha) \gamma = n - \beta. \quad \blacksquare$$

Proof of (iii): Suppose $A \subset I$ with $|A| = 1 + \lceil (1/2 + \alpha)n \rceil$. Choose $i_0 \in A$ and set $\tilde{A} = A \setminus \{i_0\}$ (so that $|\tilde{A}| = \lceil (1/2 + \alpha)n \rceil$). We define a vector x, with supp x = A, thus:

$$x_i = \begin{cases} |\tilde{A}| - (1/2 + \alpha/2)n & \text{for } i = i_0, \\ 1 & \text{for } i \in \tilde{A} \cap S_{i_0}, \\ -1 & \text{for } i \in \tilde{A} \cap (I \setminus S_{i_0}), \\ 0 & \text{otherwise.} \end{cases}$$

Now let us show that ||x|| satisfies (2). Let y be an admissible vector that is obtained from $S \subseteq I$. Suppose that

(5)
$$|\tilde{A} \cap S_{i_0} \cap P(y)| + |\tilde{A} \cap (I \setminus S_{i_0}) \cap N(y)| > (1/2 + \alpha/2)n.$$

Since $P(y) \subseteq S$ and $N(y) \subseteq I \setminus S$, we have

$$|S_{i_0}\cap S|+|(I\smallsetminus S_{i_0})\cap (I\smallsetminus S)|>(1/2+\alpha/2)n.$$

Thus,

$$|S_{i_0}\triangle S|<(1/2-\alpha/2)n.$$

So S is i_0 -large. Thus $|y_{i_0}| \leq 1 - \gamma$. Hence

(6)
$$\sum_{i \in I} x_i y_i = x_{i_0} y_{i_0} + \sum_{i \in \tilde{A}} x_i y_i \\ \leq (1 - \gamma)(|\tilde{A}| - (1/2 + \alpha/2)n) + |\tilde{A}|.$$

Note that if $i \in \tilde{A} \setminus ((\tilde{A} \cap S_{i_0} \cap P(y)) \cup (\tilde{A} \cap (I \setminus S_{i_0}) \cap N(y)))$, then $x_i y_i \leq 1 - \gamma$. It follows that if (5) does not hold, then

(7)
$$\sum_{i \in I} x_i y_i \le |x_{i_0}| + |\tilde{A}| - \gamma(|\tilde{A}| - (1/2 + \alpha/2)n)$$
$$= (|\tilde{A}| - (1/2 + \alpha/2)n) + |\tilde{A}| - \gamma(|\tilde{A}| - (1/2 + \alpha/2)n)$$
$$= (1 - \gamma)(|\tilde{A}| - (1/2 + \alpha/2)n) + |\tilde{A}|.$$

It follows from (6) and (7) that

(8)
$$||x|| = \sup_{y \in F} \sum_{i=1}^{n} x_i y_i \le (1 - \gamma)(|\tilde{A}| - (1/2 + \alpha/2)n) + |\tilde{A}|.$$

But

$$||x||_{1} = |x_{i_{0}}| + |\tilde{A}|$$

$$= (|\tilde{A}| - (1/2 + \alpha/2)n) + |\tilde{A}|$$

$$\geq ||x|| + \gamma(|\tilde{A}| - (1/2 + \alpha/2)n)$$
(by (8))
$$\geq \left(1 + \frac{\gamma(|\tilde{A}| - (1/2 + \alpha/2)n)}{(1 - \gamma)(|\tilde{A}| - (1/2 + \alpha/2)n) + |\tilde{A}|}\right) ||x||$$
(by (8) again)
$$\geq \left(1 + \gamma \left\{(1 - \gamma) + \frac{1 + 2\alpha}{\alpha}\right\}^{-1}\right) ||x||$$

since $|\tilde{A}| \geq (1/2 + \alpha)n$. Substituting $k(\alpha) = \lfloor (2 \ln 2)/\alpha^2 \rfloor$ and $\gamma = \beta/k(\alpha)$ into the above inequality yields (2).

ACKNOWLEDGEMENT: The authors thank Ted Odell, Alain Pajor and Gideon Schechtman for their help with the bibliography.

References

- [1] J. Elton, Sign-embeddings of ℓ_1^n , Transactions of the American Mathematical Society **279** (1983), 113–124.
- [2] W. Hoeffding, Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58 (1963), 13-30.
- [3] A. Pajor, Plongement de ℓ_1^k dans les espaces de Banach complexes, Comptes Rendus de l'Académie des Sciences, Paris, Série I, Mathématique **296** (1983), 741–743.
- [4] A. Pajor, Sous-espaces ℓ_1^n des espaces de Banach, Travaux en Cours, Hermann, Paris, 1985.
- [5] H. P. Rosenthal, Sign embeddings of L¹, in Banach Spaces, Harmonic Analysis, and Probability Theory (Storrs, Conn. 1980/1981), Lecture Notes in Mathematics 995, Springer, Berlin-New York, 1983, pp. 155-165.